Thursday, May 2, 2013

Genetic mutation linked with typical form of migraine headache

May 1, 2013 ? A research team led by a Howard Hughes Medical Institute investigator at the University of California, San Francisco has identified a genetic mutation that is strongly associated with a typical form of migraine.

In a paper published on May 1 in Science Translational Medicine, the team linked the mutation with evidence of migraine in humans, in a mouse model of migraine and in cell culture in the laboratory.

The mutation is in the gene known as casein kinase I delta (CKIdelta).

?This is the first gene in which mutations have been shown to cause a very typical form of migraine,? said senior investigator Louis J. Pt??ek, an investigator at HHMI and a professor of neurology at UCSF. ?It?s our initial glimpse into a black box that we don?t yet understand.?

Migraine, the causes of which are still unknown, affects 10 to 20 percent of all people, and causes ?huge losses in productivity, not to mention immense suffering,? said Pt??ek. Typical symptoms include a pounding headache; lowered pain threshold; hypersensitivity to mild stimuli including sound and touch; and aura, which Pt??ek describes as ?a visual sensation that presages the headache to come.?

The paper presents both clinical and basic scientific evidence that the mutation causes migraine.

In the study, the scientists first analyzed the genetics of two families in which migraine was common, and found that a significant proportion of migraine sufferers in the families either had the mutation or were the offspring of a mutation carrier.

In the laboratory, the team demonstrated that the mutation affects the production of the casein kinase I delta enzyme, which carries out a number of vital functions in the brain and body. ?This tells us that the mutation has real biochemical consequences,? said Pt??ek.

The scientists then investigated the effects of the mutation in a line of mice that carry it. ?Obviously, we can?t measure headache in a mouse,? Pt??ek noted, ?but there are other things that go along with migraine that we can measure.?

Pain threshold, explained Pt??ek, can be lowered in mice by the administration of nitroglycerin. The mutant mice had a significantly lower threshold for nitroglycerin-induced peripheral pain than did normal mice.

Another piece of evidence was cortical spreading depression (CSD), a wave of electrical ?silence? in the brain that follows electrical stimulation, spreading out from the point of stimulation in a predictable pattern. The researchers found that the mutant mice had a significantly lower electrical threshold for the induction of CSD.

The CSD experiments are ?especially intriguing,? said Pt??ek, because it is known that CSD spreads through the brain at 3 millimeters per minute. ?Functional brain imaging has shown that in the occipital lobes of people with migraine aura, changes in blood flow spread at the same rate.?

Finally, Pt??ek and his team found that astrocytes ? brain cells that are essential to neuronal functioning and health ? from the brains of mutant mice showed increased calcium signaling compared with astrocytes from the brains of normal mice.

?This is significant because we think astrocyte functioning is very, very relevant to migraine,? said Pt??ek. ?This is an enzyme, and so it modifies proteins. The question is, which protein or proteins does it modify that is relevant to migraine? How does it change astrocyte activity??

The research ?puts us one step closer to understanding the molecular pathway to pain in migraine,? he said. ?And, as we come to a clearer understanding, we can start thinking about better therapies. Certain molecules might be targets for new drugs.? There are good drugs now, said Pt??ek, ?but they only help some patients, some of the time. The need for better treatments is huge.?

The CKIdelta mutation is ?far from the only mutation likely to be associated with migraine,? Pt??ek cautioned. ?There are likely several, in different combinations in different people. This is simply the first one we?ve found.?

Co-authors of the paper are K.C. Brennan, MD, of UCLA and the University of Utah; Emily A. Bates, PhD, of UCSF and Brigham Young University, Utah; Robert E. Shapiro, MD, PhD, of the University of Vermont; Jekaterina Zyuzin of UCLA; William C. Hallows, PhD, Yong Huang, PhD and Hsien-Yang Lee, PhD, of UCSF; Christopher R. Jones, MD, PhD, of UU; Ying-Hui Fu, PhD, of UCSF; and Andrew Charles, MD, of UCLA.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:


Story Source:

The above story is reprinted from materials provided by University of California - San Francisco. The original article was written by Jennifer O'Brien.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal Reference:

  1. K. C. Brennan, E. A. Bates, R. E. Shapiro, J. Zyuzin, W. C. Hallows, Y. Huang, H.-Y. Lee, C. R. Jones, Y.-H. Fu, A. C. Charles, L. J. Ptacek. Casein Kinase I? Mutations in Familial Migraine and Advanced Sleep Phase. Science Translational Medicine, 2013; 5 (183): 183ra56 DOI: 10.1126/scitranslmed.3005784

Note: If no author is given, the source is cited instead.

Disclaimer: This article is not intended to provide medical advice, diagnosis or treatment. Views expressed here do not necessarily reflect those of ScienceDaily or its staff.

Source: http://feeds.sciencedaily.com/~r/sciencedaily/health_medicine/genes/~3/YfPPxOnG9yM/130501145105.htm

Phil Ramone louisville Kevin Ware Injury Video Richard Griffiths FGCU Reid Flair tony romo

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.